
GitLab Configuration as Code
Release 0.1

Hoffmann-La Roche

Nov 18, 2020





CONTENTS

1 Contents: 3
1.1 Installation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.2 Usage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.3 Client Configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.4 Configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.5 FAQ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

i



ii



GitLab Configuration as Code, Release 0.1

When configuring your GitLab instance, part of the settings you put in Omnibus or Helm Chart configuration, and the
rest you configure through GitLab UI or API. Due to tons of configuration options in UI, making GitLab work as you
intend is a complex process.

We intend to let you automate things you do through now UI in a simple way. The Configuration as Code has been
designed to configure GitLab based on human-readable declarative configuration files written in Yaml. Writing such a
file should be feasible without being a GitLab expert, just translating into code a configuration process one is used to
executing in the web UI.

CONTENTS 1

https://travis-ci.org/Roche/gitlab-configuration-as-code
https://hub.docker.com/r/hoffmannlaroche/gcasc
https://pypi.org/project/gitlab-configuration-as-code
https://docs.gitlab.com/12.4/omnibus/settings/README.html
https://docs.gitlab.com/charts/charts/
https://docs.gitlab.com/12.4/ee/api/settings.html


GitLab Configuration as Code, Release 0.1

2 CONTENTS



CHAPTER

ONE

CONTENTS:

1.1 Installation

1.2 Usage

1.2.1 Docker image

Image is available in Docker Hub.

GCasC Docker image working directory is /workspace. Thus you can quickly launch gcasc with:

docker run -v $(pwd):/workspace hoffmannlaroche/gcasc

It will try to find both GitLab client configuration and GitLab configuration in /workspace directory. You can
modify the behavior by passing environment variables:

• GITLAB_CLIENT_CONFIG_FILE to provide path to GitLab client configuration file

• GITLAB_CONFIG_FILE to provide a path to GitLab configuration file

docker run
-e GITLAB_CLIENT_CONFIG_FILE=/gitlab/client.cfg
-e GITLAB_CONFIG_FILE=/gitlab/config.yml
-v $(pwd):/gitlab
hoffmannlaroche/gcasc

You can also configure a GitLab client using environment variables. More details about the configuration of GitLab
client is here.

1.2.2 CLI

1.3 Client Configuration

GCasC uses a very particular configuration source order that is designed to allow sensible overriding of values. Prop-
erties are considered in the following order:

1. configuration file

2. environment variables (due to limitations in python-gitlab if using configuration file only
GITLAB_CLIENT_TOKEN environment variable will be used)

3

https://hub.docker.com/r/hoffmannlaroche/gcasc


GitLab Configuration as Code, Release 0.1

Important! GitLab does not allow authentication using API with username and password. The preferred approach is
to use personal access tokens. For more about it see getting personal access token.

1.3.1 Configuration file

Configuration file can have any name, but must contain have following structure (do not omit [global] line):

[global]
url = https://gitlab.yourdomain.com
ssl_verify = true # optional
timeout = 5 # optional
private_token = <personal_access_token>
api_version = 4 # optional, assumes latest

By default GCasC is trying to find client configuration file in following paths:

/etc/python-gitlab.cfg
/etc/gitlab.cfg
~/.python-gitlab.cfg
~/.gitlab.cfg

You can provide another path to your configuration file in GITLAB_CLIENT_CONFIG_FILE environment variable.

1.3.2 Environment variables

You can use set up environment variables to configure your API client:

1.3.3 Getting personal access token

You must have personal access token if you want to use GCasC. Personal access token is mandatory in any client
configuration approach. Unfortunately there is no way to configure it via API or get it automatically on instance setup.
Thus you must first have GitLab running (for fresh deploys), then go to the UI and follow these instructions to get
personal access token.

Recommendation is to limit scopes to minimal set required by the token. Additionally limit the time how long token
is valid. It may not be the most convenient approach for CI/CD pipelines, but gives you additional significant security.

1.3.4 Setting client certificate`

GCasC allows setting up client certificate in case your GitLab instance requires mutual TLS authentication. You can
configure it same way when using either configuration file or environment variables for client.

Just provide both of these environment variables. If one of them is missing, error will be raised.

4 Chapter 1. Contents:

https://docs.gitlab.com/ee/user/profile/personal_access_tokens.html


GitLab Configuration as Code, Release 0.1

1.4 Configuration

1.4.1 Appearance

GCasC allows configuring instance Appearance. Appearance can be configured either through UI (under Apperance
in Admin Area) or API. Using this you can apply branding to your GitLab instance and provide basic information to
your users.

Reference: https://docs.gitlab.com/12.7/ee/api/appearance.html

Appearance structure is flexible. It starts with a root key appearance. Then you provide configuration options as
defined in these docs. For example

appearance:
title: "GitLab instance title"
description: "Some description of GitLab instance"
header:
logo: "http://path-to-your-logo.com/logo.png"
message: "This is message to show in header"

Note: Any invalid keys will be discarded, warn message will be presented, but GCasC will continue execution.

1.4.2 Application Settings

GCasC allows configuring Application Settings. It consists of plenty of configuration options, that can be set only
through UI or API. They are key to make your GitLab instance work as you intend to.

Reference: https://docs.gitlab.com/12.4/ee/api/settings.html

Settings the structure is flexible. It starts with a root key settings. Then you provide configuration options as
defined in these docs. For example

settings:
elasticsearch:
url: http://elasticsearch.mygitlab.com
username: elastic_user
password: elastic_password

and

settings:
elasticsearch_url: http://elasticsearch.mygitlab.com
elasticsearch_username: elastic_user
elasticsearch_password: elastic_password

are exactly the same and match elasticsearch_url, elasticsearch_username and
elasticsearch_password settings. This means you can flexibly structure your configuration Yaml, where a
map child keys are prefixed by parent key (here elasticsearch parent key was a prefix for url, username and
password keys). Simply:

settings:
prefix1:
prefix2:

value21: 'value21'
value1: 'value1'

prefix1_value2: 'value2'

1.4. Configuration 5

https://docs.gitlab.com/12.7/ee/api/appearance.html
https://docs.gitlab.com/12.4/ee/api/settings.html


GitLab Configuration as Code, Release 0.1

will try to configure following properties: prefix_value1, prefix_value2 and
prefix1_prefix2_value21. You only need to follow available Application Settings.

Note: Any invalid keys will be discarded, warn message will be presented, but GCasC will continue execution.

You can adjust your Yamls by splitting them into multiple or injecting environment variables into certain values using
!include or !env directives respectively. Example is shown below:

settings:
elasticsearch: !include config/elasticseach.yml
terms: !include tos.md

where:

• settings.elasticsearch is injected from file under ./config/elasticsearch.yml path. Its
configuration may look like this:

url: http://elasticsearch.mygitlab.com
username: !env ELASTICSEARCH_USERNAME
password: !env ELASTICSEARCH_PASSWORD

Note that here also ELASTICSEARCH_USERNAME, ELASTICSEARCH_PASSWORD are used to inject user-
name and password from environment variables

• settings.terms is injected from ./tos.md file

1.4.3 Instance Feature Flag

GitLab comes with some functionality configurable using feature flags. Part of the GitLab functionality is turned off,
where to enable it you need to use API, cause it does not offer UI for setting up feature flags.

Reference: https://docs.gitlab.com/ee/api/features.html

Important! This is authoritative configuration, thus any existing Feature Flags will be removed and replaced with the
ones defined in config file. If none are defined in config file, existing Feature Flags will remain untouched.

Features offered by GitLab are not collected in a single documentation page, but they are scattered. Please reference
to GitLab documentation for them. Features yaml structure starts with a root key features . It’s structure is defined
below:

features: [list]
- name: [string]
value: [bool/int]
feature_group: [string|optional]
groups: [list(string)|optional]
projects: [list(string)|optional]
users: [list(string)|optional]

To configure certain feature for a limited set of:

• users, by specifying users by their username.

• groups, by specifying groups by group short name.

• projects, by specifying groups with format group_name/project_name.

Example of complex features configuration:

6 Chapter 1. Contents:

https://docs.gitlab.com/12.4/ee/api/settings.html


GitLab Configuration as Code, Release 0.1

features:
- name: some_percentage_feature
value: 25
users:

- user1
- user2

- name: some_percentage_feature
value: 50
users:

- myuser
groups:

- mygroup
projects:

- mygroup1/myproject
- mygroup1/myproject2

It will configure some_percentage_feature with value 25 for users user1 and user2, while with value 50
for user myuser, group mygroup and projects mygroup1/myproject, mygroup1/myproject2.

1.4.4 License

Only for Enterprise Edition or gitlab.com. FOSS/Community Edition instance will fail when trying to configure
license

GCasC offers a way to manage your GitLab instance licenses. The clue is that despite license is just a single file,
you need to configure other properties of license so GCasC do not upload new (but already used) license with every
execution. That way it is able to recognize that exactly the same license is already in use and skips uploading new one.
Otherwise you could end with very long license history.

Reference: https://docs.gitlab.com/12.4/ee/api/license.html

Properties

Important! Beware of storing your license in data field directly as text. This is insecure and may lead to leakage
of your license. Use !env or !include directives to inject license to license.data field securely from external
source. Also keep your license file itself safe and secure!

Examples

Full license configuration::

license:
starts_at: 2019-11-17
expires_at: 2019-12-17
plan: starter
user_limit: 30
data: |
azhxWFZqbk1BOUsrTVxug6AdfzIzWXI1WUVsdWNKRk53V2hiV1FlTUN2TTRS
NkhSVFFhZ3hCajd4bGlLMkhhcUxhd1EySHh2TjJTXG40U3ZNUWM0ZzhqYTE5
T1lcbkJnNERFOVBORkpxK3FsaHZxNFFVSG9GL0NEWWF0elkyOE9SUE41Ny9v

Injecting license data from external file::

1.4. Configuration 7



GitLab Configuration as Code, Release 0.1

license:
starts_at: 2019-11-17
expires_at: 2019-12-17
plan: ultimate
user_limit: 30
data: !include /etc/gitlab/my_gitlab_license.lic

Injecting license data from environment variable::

license:
starts_at: 2019-11-17
expires_at: 2019-12-17
plan: ultimate
user_limit: 30
data: !env GITLAB_LICENSE

GitLab configuration is defined in a YAML. Providing configuraton for your GitLab instance is as simple as this:

appearance:
title: "Your GitLab instance title"
logo: "http://path-to-your-logo/logo.png"

settings:
elasticsearch:
url: http://elasticsearch.mygitlab.com
username: !env ELASTICSEARCH_USERNAME
password: !env ELASTICSEARCH_PASSWORD

recaptcha_enabled: yes
terms: !include toc.md
plantuml:
enabled: true
url: 'http://plantuml.url'

features:
- name: sourcegraph
value: true
groups:

- mygroup1
projects:

- mygroup2/myproject
users:

- myuser

license:
starts_at: 2019-11-17
expires_at: 2019-12-17
plan: premium
user_limit: 30
data: !include gitlab.lic

You can customize where GCasC searches for configuration file or if any changes should be applied on instance using
environment variables.

Yaml directives

Custom Yaml directives give you enhanced way of defining your GitLab configuration YAML, where you can split
your configuration into multiple Yaml files or inject environment variables.

• !include to provide path to another Yaml or plain text file which will be included file under certain key, e.g.

8 Chapter 1. Contents:

https://docs.ansible.com/ansible/latest/reference_appendices/YAMLSyntax.html


GitLab Configuration as Code, Release 0.1

settings:
terms: !include toc.md
elasticsearch: !include config/elasticsearch.yml

It searches for relative paths in current working directory tree AND in directory tree where GitLab configuration
file is present.

• !env to inject values of environment variables under certain key, e.g.

settings:
elasticsearch_username: !env ELASTICSEARCH_USERNAME
elasticsearch_password: !env ELASTICSEARCH_PASSWORD

Note: Use !env directive to inject secrets into your Yaml. Never put secrets directly in Yaml file!

1.5 FAQ

I’m getting “gcasc.ClientInitializationError: GitLab token was not provided. It must be defined in
GITLAB_CLIENT_TOKEN environment variable”

It is likely that you provided invalid GitLab client configuration. If you use configuration file, verify
if it has all required configuration parameters and that GITLAB_CLIENT_CONFIG_FILE environment
variable is set to a path where your config file is. If you use environment variables, verify that you provided
all necessary variables. See the :ref:client configuration <client_configuration> for
details.

1.5. FAQ 9


	Contents:
	Installation
	Usage
	Client Configuration
	Configuration
	FAQ


